通过上面两个假设,是否看出一些问题?
不管假设3是说谎还是诚实,2永远都是诚实组,如此一来就能得到第一个正确,也就是2。
就像之前说过的,数学有很强的共同性,只要明白了套路,剩下的不管怎么变都是万变不离其宗。
继续按照顺序往下推,假设4说的是真话,那么不和4一组的6就是说谎组,假设4说的是谎话,它说自己不跟6一组,但因为是谎话所以实际上它和6是同一组。
依旧是正反两次假设,你会发现不管4说谎还是诚实,6永远都是说谎组,这样一来6就可以被排除了。
接下来依旧是完一样的道理,5说他和3并不是同一组,不管他说谎与否,3永远也都是说谎者,自然也就排除了3。
接下来就更加简单了,因为我们已经得到了一个正确的2,两个错误的分别是6和3,只需要从剩下的三个中挑出一个正确的或是排除两个错误的即可。
利用给出的条件继续往下推,既然我们已经知道了6是说谎组,那么他说‘1是诚实的’这句话当然也是谎话,代表1其实也是说谎组。
同理,刚刚我们从6那边推断出1也是说谎组,那么1说5是真的,自然